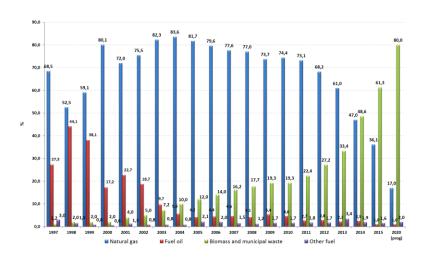


Solar district heating – High efficiency Savoaolar solar thermal plants in Danish district heating systems

International Energy Conference
Energy Efficiency and Innovations in the heat sector
Lithuanian and European Experience


Vilnius, 4 December 2017

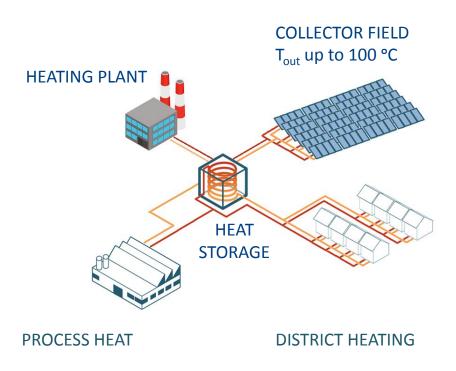
Solar thermal

– a role in the Lithuanian DH sector?

- Presentation of Savosolar technology and references
- Solar district heating experience in Denmark
- Solar district heating and biomass synergies?
- Next step identify projects and partners

Our customers face

- Constantly rising energy prices
- Business models without the possibility to forecast energy costs
- Public pressure and legal obligations to lower greenhouse gas emissions
- Politically dependent fuel costs and fuel availability


Savosolar offers

Interest rate and depreciation are the costs

- The highest efficiency in the market, and thereby the lowest possible energy cost over 25 years
- Energy price stability over 25 years
- Independent energy production without fuel costs and less political dependency
- Emission free energy and an environmentally responsible image

Solar thermal plant – turnkey

- Savosolar work with local partners
 - Local economy
 - Local competences
- The whole solar thermal system, comprising:
 - Collector field
 - Piping (solar field and transmission)
 - Pumps
 - Heat exchanger
 - Control
 - Heat storage (tank)
 - Building
 - Ground works

Savosolar winning market concept

Unique technological advantage

- Absorber strips made from aluminium profiles as used in automotive heat exchangers
- One-of-a-kind **coating** technology, which makes it possible to coat entire absorbers after assembly

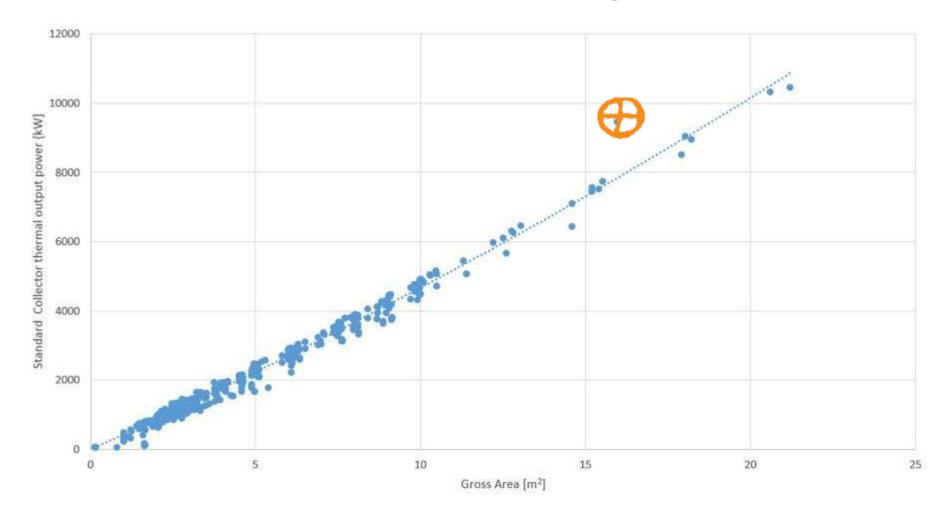
• Has resulted in the market's most efficient large area collector

Minimal thermal losses

Traditional production
Welded strip

Heat transfer to fluid

Savosolar


Thin-walled profile with Direct Flow heat transfer

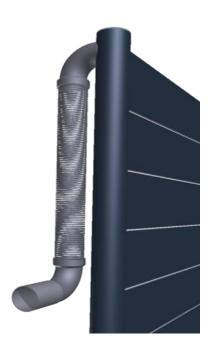
Optimised heat transfer

The most efficient collector in the world

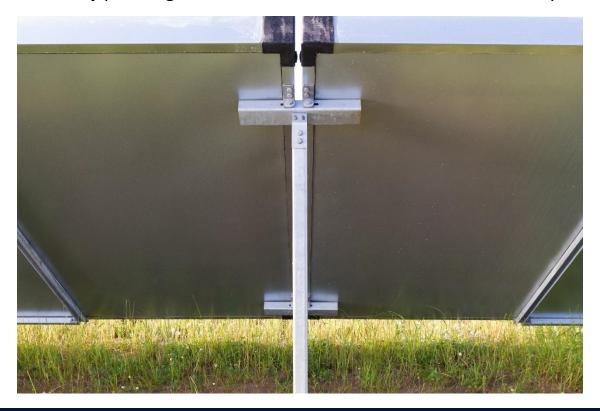
Collectors in Swiss subsidy list

Further advantages

- Awarded with the Intersolar Award 2011 for "the biggest absorber development in the industry the last 30 years"
- Double glazed collectors with superior glass insulation
- Solar Keymark certified and ISO 9001 certified
- Only producer of large area collectors with PED module II certification according to directive 97/23/EG of the European Parliament
- Mounting solutions for both fields and roofs fields preferred
- Etched (as opposed to coarted) anti-reflective glass treatment without deterioration over time
- Several large scale district heating solar fields up to 15,300 m² in size

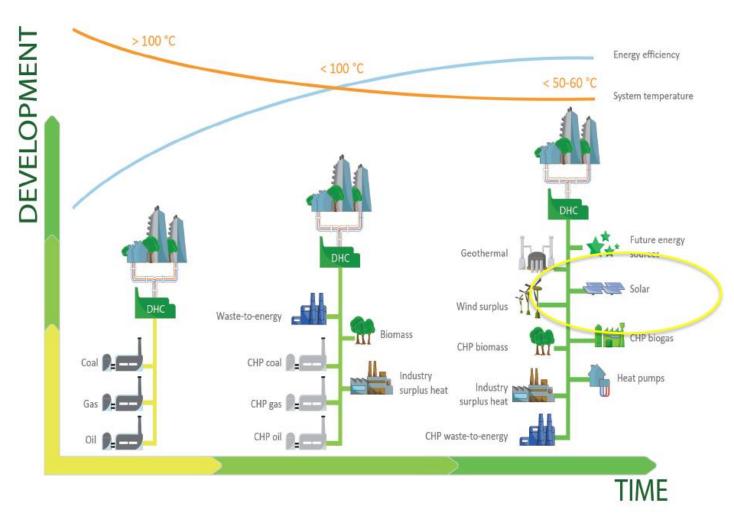


Minimal thermal losses in connections

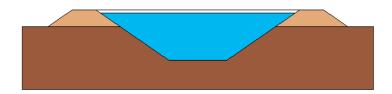

- Integrated connection hoses (patent pending)
 - Minimises thermal losses in the connections
 - Allows for mounting with only 40 mm distance between panels
 - Reduces shadowing effects compared to traditional connections
 - Protects the connection hoses from external wear from weathering and bird attacks

Maximum use of available land – heat density

- Shared collector foundations (patent pending)
 - Minimises the number of foundations
 - Ensures that collectors are aligned with each other
 - Offers a visually pleasing result which is less noticable in the landscape



District heating development



Euroheat & Power, www.4dh.eu

Heat storage – enabling diversification

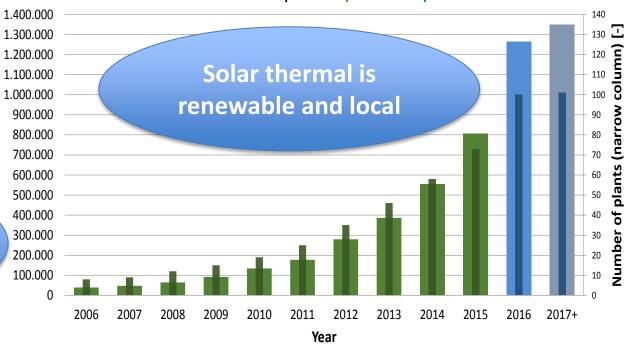
- Heat storage is always required for solar thermal
- Diurnal or seasonal different technologies
 - Diurnal tank storage, 20-35 % solar fraction
 - Seasonal e.g. pit thermal heat storage, 50-70 % solar fraction

Solar district heating in Denmark

- Phases of a solar thermal system
 - Preparation and planning
 - Establishing
 - Commissioning
 - Operation and maintenance
- Target groups
 - Boards
 - Municipalities
 - Operators
- Six examples of solar district heating systems
 - Based on interviews
- Links to more information
 - E.g. <u>www.solarheatdata.eu</u>

http://task55.ieashc.org/publications

Solar district heating in Denmark


Reduced CHPproduction – different production structure

Reduction of heat price primary driver for substituting natural gas with biomass

Increased use of biomass - Environment?

Central – decentral
Diversified systems
Solar thermal is modular; easy
to expand and combine with
other technologies

Solar district heating plants in Denmark
Solar area and number of plants in operation and planned

Solar thermal and biomass boilers – complementary technologies

- Operation of biomass boiler
 - Saving lifetime of biomass boiler when low/no summer load
 - Reducing operation costs (low for solar thermal)
 - Solar thermal more efficient at lower output temperatures
 - Biomass boiler more stable and efficient operation with heat storage
- Solar thermal characteristics:
 - Stable energy price
 - No emissions
 - No political risk regarding supply of "fuel" (cf. biomass market, regulation)
 - Reducing the area requirement (*20)

